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Abstract: We report a 795-nm diode-pumpable Rb laser using a buffer gas of pure 3He.  3He gas enhances
mixing of the Rb fine-structure levels. This enables efficient lasing at reduced He pressures and improved
thermal management.
OCIS codes: 140.1340, 160.3380.

Since the advent of lasers over four decades ago, solid-state and gas lasers have followed  largely separate 
development paths with gas lasers being based primarily on direct electrical discharge pumping or luminescent 
chemical reactions; and dielectric solid-state lasers being pumped by flash lamps or semiconductor diode laser 
arrays.  In 2002 researchers at Lawrence Livermore National Laboratory demonstrated a new class of laser, 
combining features from both the gas and solid state laser families, based on diode excitation of atomic alkali vapors
[1]. Since that first demonstration of a rubidium resonance transition laser, multiple demonstrations of alkali 
resonance transition lasers have been reported in the scientific literature using Rb [2], Cs [3, 4, 5, 6] and K [7] as the 
gain media.  These systems are pumped on the alkali D2 (n2S1/2→n2P3/2) transition and lased on the D1

(n2P1/2→n2S1/2) transition.  Because they are compatible with commercially available laser diode pump sources and 
show promise for power scaling with good output beam quality and high efficiency, they are being actively 
investigated today.  One common feature of these previous demonstrations has been the use of ethane as the buffer 
gas or a buffer gas component in the alkali vapor cell.  This approach, first suggested by Konefal [8], uses ethane to 
promote rapid fine-structure mixing, a requirement for efficient laser operation, between the terminal pump level 
(2P3/2) and the initial laser level (2P1/2).  However, due to the ethane in the laser cell this approach has proved 
problematic from a reliability standpoint due a chemical reaction that takes place between the alkali and ethane 
resulting in carbonaceous deposits on cell surfaces (e.g. windows) that see high intensity laser light.  Following the 
suggestion of Beach et al [3] who calculated that the Rb-He fine-structure mixing cross section is sufficient to 
permit efficient diode-pumped Rb based systems at He buffer gas pressures of ~10 atm and higher, Wu et al
demonstrated a hydrocarbon-free version of the rubidium laser that obviated the issue of carbon formation and 
degradation of the vapor cell that we observed in previous alkali laser demonstrations [9]. 

One potential disadvantage of the pure He buffer gas approach arises from the much smaller Rb F-S mixing 
cross section of He compared to that of ethane.  The impact of these differing cross section values means that to 
achieve equivalent F-S mixing rates, higher pressures are required in the pure He systems than would be required in 
systems using ethane as a buffer gas component.  However, higher He pressures lead to larger thermal aberrations 
under equivalent heat loads.  The refractive index variation with temperature dn/dT in the alkali gain cell is 
proportional to the He pressure, so higher He pressures will give larger thermal aberrations under equivalent heat 
loads.

One approach to partially mitigate these issues introduced by the pure He buffer gas is to replace the He 
buffer gas having a natural isotopic abundance with isotopically enriched 3He.  The advantage of using isotopically 
enriched 3He stems from its lower mass and therefore higher thermal velocity at a given temperature in comparison 
with naturally occurring He.  The higher thermal velocity associated with 3He increases the F-S mixing rate, 
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cross section, and vr is the mean relative speed between He and Rb atoms.   First, at a given temperature vr is higher 

in 3He than 4He by approximately 4 / 3 1.15≈ , which not only benefits the F-S mixing rate which depends directly 



on vr, but also improves thermal management in the cell.  Since the thermal conductivity κ of a gas to lowest order is 
proportional to the mean particle velocity, κ of 3He is larger than that of 4He by the same factor.  Secondly, the F-S 
mixing cross section itself has a velocity dependence  that is expected to give a Rb-3He value larger than the Rb-4He 
value at a given cell temperature due to the difference in thermal speeds of the two He isotopes [10].  Figures 1 and 
2 show our experimental setup and data acquired in an initial series of experiments using 2.7 atm of pure 3He buffer 
gas and a Ti:sapphire laser as a surrogate for laser diode arrays [11].

The good agreement between measured laser performance (symbols) and our laser model (solid lines) in 
Fig. 2 supports further pursuit of this approach for power scaling.  Obviated is the issue of carbon formation and 
degradation of the vapor cell that was observed in previous alkali laser demonstrations that used ethane as a buffer 
gas component.  Additionally, we have now demonstrated a similar system using fully laser diode-pumping.  The 
results of this investigation and our power scaling predictions based on our anchored models will be covered.

In view of the advantages of 3He over 4He based systems, we expect the 3He approach to be the preferred 
route to power scaling DPAL lasers to efficient, reliable, and good beam quality systems.  Due to their projected 
efficiency advantages over diode-pumped solid state lasers (DPSSLs), their compatibility with commercially 
available laser diode arrays, and now a demonstrated system that promise very high reliability, diode-pumped 3He-
only Rb lasers will potentially compete favorably with DPSSLs in many applications that require high beam quality 
cw or quasi-cw laser operation.

This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore 
National Laboratory under Contract DE-AC52-07NA27344.
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Fig. 1.  Schematic diagram of the experimental setup used 
in our demonstrations. 

Fig. 2.  Rb laser output power for various pump powers plotted 
against output coupler reflectivity.  Solid curves represent model 
predictions.  From top to bottom, pump powers are: 1.65, 1.52, 
1.39, 1.24, 1.1, 0.95, 0.81, 0.66 and 0.52 W.


